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656 B.ECKHARDT AND H. AREF

1. INTRODUCTION

In the first part of this study (Aref & Pomphrey 1982 ; henceforth referred to as part 1) chaotic
behaviour in the dynamics of four identical vortices was demonstrated and analysed. In this
paper we consider the case where the vortex strengths satisfy «, = —«,, k, = —k,;. The most
important difference from the system studied in part 1 is the possibility of unbounded motion.
Neutral vortex pairs, such as vortices 1 and 4 (or 2 and 3) can propagate to infinity. We are
again primarily interested in identifying and studying those portions of phase space where
chaotic motion is to be found.

The paper proceeds much as part 1 (and the notation is largely consistent with that used
there). In §2 we show how a point vortex system with n neutral pairs, and thus N = 2n degrees
of freedom, can be reduced to a hamiltonian system with N—2 degrees of freedom by canonical
transformations. A similar result was achieved for identical vortices in part 1. Related work has
been published by Khanin (1982).

In §3 the formalism is applied to a single pair for illustrative purposes. Application to the
case N = 4 follows, and §3 concludes with a discussion of certain special solutions for two-pair
motion. Some of these solutions have been known for at least a century. Additional details of
integrable cases are collected in Appendixes A and B.

In §4 we report numerical experiments identifying regions of phase space where chaotic
behaviour is of importance. Here we extend previous studies by Manakov & Shchur
(1983).

The concluding §5 contains a discussion of our results, in particular their relation to other
investigations of chaotic behaviour in problems with scattering states, and their significance for
two-dimensional hydrodynamics.

For a brief introduction to this paper see the letter by Eckhardt (19884).

2. REDUCTION OF DEGREES OF FREEDOM BY CANONICAL TRANSFORMATIONS

As discussed in part 1 and in several places in the literature (Kirchhoff 1876; Lamb 1932;
Batchelor 1967, chap. 7) the dynamics of N point vortices defines a hamiltonian system. In the
following analysis N is assumed even, N = 2n, and the vortex positions in the flow plane are
designated by complex numbers, z{”, where [ =1,...,n and s = +. The vortices at z{*, z{”
have circulations or strengths +k, and —«;,, respectively (where we assume &, > 0).

The fundamental Poisson brackets (see part 1, §2) are

# _ 3 * — . )
[ch)’zg )] =0, [Z?):Zﬁf.) 1= _215883’ 8lm/Kl’ (2.1a, b)
where [,m=1,...,n; 5,5 = +. We now introduce the variables
4 1)+ - S - + -
o =4+, o = k(& -2, (2:20.0)
(+)

for /= 1,...,n. Clearly ;" gives the location of the midpoint of the line joining the vortices in

1 On p. 377 and in the caption of figure 8 in that paper the quantity A, appears as (24/3)/3. This is a misprint.
The correct value is 4, = 2/(34/3).
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COLLISION DYNAMICS OF VORTEX PAIRS 657

the Ith pair (positions z{* and z{™), whereas o{™ is the impulse carried by that pair. The
quantities o satisfy the Poisson bracket relations

[69,681=0, [0®,08*] = —2id, _, 6, . (2.3a,0)
The formulae : 2 = o + (s/2K;) 07 (2.4)

express the vortex coordinates in terms of the o®.
It is straightforward to calculate the integrals of motion Z«,z, and X, |z,|* in terms of
the 0. One obtains

N n
Q+iP= Y k,z, = X 0 (2.5)
a=1 I=1
N n .
and I= Yk, lzP =23 Re(oP*a{?). (2.6)
" a=1 =1

(In part 1 this quantity was always positive and was, thus, called L2.)
To produce canonical variables we let

o = g +ip{™®, (2.7)

where ¢, p\® are real. It is then easy to see that (2.3) implies

[qgé)’ ‘Iﬁle) = [pf)’ fff =0, [qg” pgl')] = 63.:' 8l,m’ (2'8‘1’ b)

so that ¢, p® are indeed canonical variables for [ =1,...,n; s = %. In terms of these new
variables, (2.5) and (2.6) become :

n
Q+iP= 3 ¢ +ip", (2.9)
=1
n
I=23 ¢P ¢ +p0p0. (2.10)
=1

Equation (2.9) then suggests introducing another set of real variables Q, P through

QP = w7 3, (g +igi?) b (@11)
1=1
where ¢ =0,1,...,n—1 and s = +. Note that (2.11) represents a discrete Fourier transform
of the o{® thought of as an array of complex data. This development is quite analogous to that
of part 1. The essential new step is the introduction of the ‘pair variables’ ¢ in (2.2).

It follows from (2.10) and (2.11) that

n-1
I=2F Q¥ QY +PH PO (2.12)

p=0
a result that we shall need in §3b. It also follows (see part 1, §3) that Q% and P} are
canonically conjugate for all # =0,1,...,n—1 and s = *. Finally it is clear from (2.9) that

Q+iP = (@) +iP{) v/ (2.13)

Thus Q§” and PV are integrals of the motion and their conjugate variables, P§” and Q¢
respectively, are cyclic. The hamiltonian written in terms of the @, P therefore can be
thought of as describing a system with only N—2 degrees of freedom (= 1,...,n—1;5 = *).

47-2
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658 B. ECKHARDT AND H. AREF

The quantities Q{”, P{", which according to (2.13) are just the components of the fluid
impulse, or because the total circulation vanishes the fluid momentum (see Lamb 1932,
chap. 7; Batchelor 1967, chap. 7) appear as parameters. The variables Q{", P§ are absent from
the hamiltonian. Their evolution must be determined subsequently by solving -

QP = AH/OPY,  B{ = —0H/0QS, (2.144,)

where H is the hamiltonian (which will be given explicitly in §3).
In summary, a reduction of degrees of freedom from N to N—2 has been accomplished.

3. THE REDUCED HAMILTONIAN
In general the hamiltonian for N point vortices with strengths «, and positions z,,
a=1,...,N,is (see part 1, §2) ‘
H=—0©m)™" I kk;lnlz,—z). ' (3.1)

1<a<f<N

Labelling the vortices according to / and s as in §2 we obtain

H= (21:)‘1{2‘, kiln|zP—z7l— ¥ Kk, X s5'In Izg"—-zﬁ,‘;)l}. (3.2)
I=1 1<l<m<n 8,8=%
To write H in terms of the @, P of §2 we must invert (2.11), i.e.
n-1
Z = i s e-iznﬁ(l-l)/n{Ql(‘H+iP/(‘—)+ (s/2k,) (Q/(t—)+iP/(t+))}' ' (3.3)
p=0

Combining (3.3) with (3.2) yields the desired lfcsult; We now turn to special cases.

(a) The case N = 2: a single pair
This is trivial but, nevertheless, illustrative. Equation (3.3) becomes
2z, ={Q,+iP.+ (Q_+iP,)/2«}, z_={Q,+iP.—(Q_+iP,)/2«}, (3.4a,b)
where we have adopted the obvious abbreviations z, = z{?, Q, = @Y, P,= P§’, s = + and
k= k. Thus, z,—z_= (Q_+iP)/k , (3.4¢)
and the hamiltonian is H, = (*/4n) In (Q*+ P2). (3.5)

Note that @_ and P, are integrals of the motion. ‘
The equations of motion for @, and P_, (2.14), become

Q, = 0H, /P, = (*/2m) P,/ (Q2+ PY), (3.64)
P =—0H,/0Q_=—(«*/2m) Q_/(Q2+P}). (3.65)
From (3.4¢) we see that Q2+ P% = k®d*, where d is the (constant) separation of the pair. It
follows that 0.(f) = Q,(0)+ P,1/2nd®, P.(t) = P.(0)—Q_t/2nd?, (3.74,)
whence 2,(0) = 2,(0) + (P, —iQ_) t/2nd? (3.80)
or ' z,(t) = 2,(0) —ik(z, —2z_) t/2nd>. | (3.85)

This is, of course, the standard result of uniform linear translation.
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COLLISION DYNAMICS OF VORTEX PAIRS 659

(b) The case N = 4&: two vortex pairs

We begin by writing out the transformation equations (2.11) and their inverses, (3.3). It is
convenient to introduce the abbreviations

I'=V/(kKy); A=V (Ki/Ky). (3.92)

Then Kk, =Al; Kk, =A"'T ‘ (3.9%)
We also introduce the abbreviations {, fo, g, via (2.11) as followst:
= (@9 +iPS) /v 2 = (A2 —z) + A7 (2P — 287}, (3.104)
&= (@ +iPY)v2 =P +20 + 27 + 2, (3.105)
L, = (@ +iPO)v/2 = §(e + 20— 20— 2), (3.100)
g = (@ +iP")/v/2 = A (zfP —27) — A7 (25" —2”)}. (3.104)
The inverse transformation is
29 = HE+ L+ G+ L) /AT, (3.11a)
27 = b+ L~ (G+E)/AT), (3.115)
29 = HE— L+ AL~/ T, (3.11¢)
%7 = H6~&~A&—&)/TY. (3.11d)
Thus, =P =¢ +a_g+a, L, (8.12a)
20— =¢ —a_§—a, L, (3.129)
2P —z0 = §+ o, fta ., (3.12¢)
Pz =8 f—a L, (3.124)
where V a, = (A'+A)/2r, (3.13)
and 2P =20 = (L + ) /AL, 20—z = A&, —¢)/T. (8.12¢,f)

The hamiltonian for two pairs then is

- Hy= (I'*/2m){A* n|§,+ L |+A7 In|—C | ' ‘ 4
|G- bota L))/ (G — (@Gt )M (3.14)

It is clear from this expression that the dynamics of two vortex pairs is simplified when A = 1
and/or ¢, '= 0. Indeed, for {, =0 (and any A) the system is integrable. This may be seen in
two ways. From (3.14) we have that the hamiltonian depends only on £, and _, i.e. according
to (3.10) on the conjugate pairs (Qﬁ*’,P‘”) (Q57, P{?). From (2.12) we see that the additional
integral ‘ '

I= Sk lef =2Re (€, 4+, L) (3.15)

a=1

+ The variables {,,{_are clbsely related to the variables &, ¥ used by Domm (1956) in his analysis of the stability

of vortex streets.
+ Here and henceforth constant terms in the hamiltonian, i.e. terms independent of the vortex positions, are

omitted without specific comment.
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660 . B.ECKHARDT AND H. AREF

depends only on {,,{_ for { =0. Thus, the two-pair problem in this case reduces to a
hamiltonian system with two degrees of freedom and one additional integral.

In fact this result is a special case of a more general one, namely that any four-vortex problem
with vanishing total circulation and vanishing momentum is integrable. This follows from the
general commutation relations of part 1 (§2):

[@,P] = g Ko [@,1]1=2P, [P,I]=-2Q (3.16a)

a=1
(see (2.5), (2.6) for the definitions of @, P and I). Thus, if the sum of the circulations vanishes,
and if Q = P = 0, the three independent integrals @, P and I are in involution and the four-
vortex problem is integrable. This argument is more general than the one based on (3.14) and
(8.15) because it applies also to cases where the vortex strengths are not opposite pairwise. A
detailed analysis is given by Eckhardt (19885).
When ¢, = 0 we see from (3.10) that

L= AP —20). (3.17)

This is the impulse carried by the pair 1*1~. To write equations of motion for {,,{_ it is useful
to consider the analytic continuation J, of H,, for {;, = 0 given by

Hy= (F2)2n) [(A2+A7%) InL_+In{(8—(«_& )/ (G — (2, L) (3.18)

Using the Cauchy-Riemann equations we see that

& = (0P —iPO)V2 = QH, /0P +i0H,/0Q7) V2 = 06,/00.  (3.194)

and similarly &* = i0,/0L,. (3.195)
Evaluating the derivatives in question we find

& =Tl o g e ) (8.200)

and e e = cwa (3.200)

The quantitative discussion of this integrable system is given in Appendix A. Some qualitative
points may be found in the next subsection.

(¢) Some qualitative features of two-pair motion

- To uncover some of the special features of the motion of two vortex pairs it is useful to
investigate various integrable limits of the dynamics. In subsection (b) we have already seen
that there is a wide class of integrable cases. In this subsection we attempt to collect a largely
qualitative synopsis of the distinguishing features that have emerged from investigations of
integrable cases. Some of these features are central to an understanding of how chaos appears
in this system, and what the implications of chaotic motion are.

We start with the remark that in a system where all four vortices have the same absolute
value of the circulation, in our notation k, = k,, a case that we shall refer to as ‘identical pairs’
for brevity, integrability is related to the existence of discrete symmetries, i.e. transformations
forming a discrete (as opposed to continuous) group that carry the vortex configuration into
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COLLISION DYNAMICS OF VORTEX PAIRS 661

itself. For example, the integrable cases for {, = 0, identified in (4) above, are associated with
the existence of a centre of symmetry

20 ==z 5=+ - (3.21)

as observed by Aref (1982). This is not true when «; # k,. Although ¢, = 0 now implies

2 = — (ky/K,) 2 this is not a discrete symmetry of the equations of motion, i.e. it is not (in
general) conserved under time evolution. (It is conserved for the steadily rotatmg states found
in Appendix A, see (A 15).) '

Another symmetry is the reflection symmetry for pairs with a common axis given by
2P =% |=1,2;5=4. _ » (3.22)

This case has been studied extensively in the literature (Grobli 1877, pp. 63-82; Love 1894;
Hicks 1922; Friedrichs 1966, chap. 19; Acton 1976) in particular for identical pairs, with the
earliest but subsequently overlooked study by Grobli possibly being the most complete. The
discrete symmetry (3.22) does extend to the case of different pairs «, # «, because, according
to the method of images, we are solving the problem of two vortices in the vicinity of an infinite
plane wall. Both symmetries (3.21) and (3.22) have extensions to more than four vortices (see
Grobli 1877 ; Greenhill 1878; Aref 1982).

As part of this study we have reviewed the literature on coaxial pairs and found it to be
rather incomplete for k; # k, with a serious flaw in the most recent attempt at analysis (Acton
19776). In our analysis we have found apparently new régimes of bound-state motion for coaxial
pairs of different strengths. These results and a restatement of known results for the case
K, = K, are in Appendix B.

We shall see later that the greater symmetry of the case of identical pairs appears to have
important consequences for the overall regularity of this system relative to the more general
case of two pairs of different strengths. «

States of the four-vortex system under consideration in which two or three vortices are
clustered together very far from the remainder are well described, because each of the
constituents is then an integrable system with a relatively simple motion (when perturbations
from the distant vortex or vortices are ignored). For example, we may have a state in which
the four vortices are grouped into two, distant, individually neutral, vortex pairs that never
enter on a collision course. Two-vortex motion is described in any of several standard texts (see
references given in §2). For a description of three-vortex motion see Grobli (1877) Synge
(1949), Novikov (1975), Aref (1979, 1983) and part 1.

We shall refer to configurations wherein all the point vortices for all time have rclative
displacements that remain within certain bounds as bound states. Apart from these there are
three other possibilities where the vortices are paired up into freely propagating, neutral pairs
either initially, finally or both. If both the initial and the final state involve such freely
propagating pairs, we speak of (vortex pair) scattering, and as in other such problems use the
terminology of incoming and outgoing (scattering) states. If the initial state consists of freely
propagating pairs, but the final state is a bound state, we shall call the process a trapping. The
converse process, which by the time reversibility of the equations of motion must also be
possible, where a state remains bound for some time but then disintegrates into two vortex pairs
that fly off to infinity, we shall refer to as (pair) dissolution.

Within the integrable cases it is possible to find simple examples of all these four kinds of
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662 B.ECKHARDT AND H. AREF

dynamical behaviour. For example, a head-on collision between two identical vortex pairs with
a common axis of symmetry will result in a scattering process. Placing the two positive vortices
close together, and, thus, by reflection symmetry the two negative vortices close together, but
with sufficient separation of positive and negative vortices, will result in a bound state in which
the four-vortex system simulates a vortex pair with each lobe of the pair being made up of two'
rapidly orbiting point vortices. Examples of trapping and dissolution can be found in the earlier
paper by Aref (1982; see also Koiller et al. 1985). Such motions typically correspond to a
separatrix in the system phase space.

Within the scattering processes a further classification is possible into what we shall call
direct and exchange scattering processes, a distinction already available from the phenom-
enology of scattering of a pair off a single vortex in the three-vortex problem (see Aref
1979, 1983). As the names imply, a direct scattering process is one in which the ificoming and
outgoing pairs are the same. Using an obvious notation we might write: (14)+ (23) —
(14)* + (23)*, where the * on the final states indicates that they will in general be dynamically
different from the initial states. For an exchange interaction, on the other hand, we would have
a ‘reaction scheme’: (14) + (23) - (13) 4 (24), which shows that the vortices have exchanged
partners during the strong interaction of the collision process. The head-on collision of
identical, coaxial pairs mentioned above is a simple example of this important mechanism.

Exchange scattering is strictly speaking only possible when the vortex pairs are identical.
However, we shall want to use the term also in cases where «, # k, and an exchange of partners
takes place for some long but finite time. In particular, exchange processes can lead to
important nonlinear ‘resonance’ phenomena in cases where &, and , differ by a small amount
(relative to either). This observation, and the suggestion that it is important for chaotic
behaviour in a four-vortex system, seems first to have been made clearly by Manakov & Shchur
(1983). Similarly we shall speak of direct scattering also in those cases where two non-neutral
pairs collide and re-emerge even though we know that further collisions must occur.

When two vortex pairs of nearly equal strengths collide and an exchange interaction takes
place the resulting pairs will have a net circulation and thus cannot propagate to infinity. As
they separate their motion can be computed from the well known formulae for a single pair.
If the difference «, —«, is called d«, the two non-neutral pairs will move on circles of radius
p ~ kd/d« and with orbital periods 7 ~ d®/3«, where d is the separation of the vortices in the
pair, which we take to be of the same order as the size of the initial pairs. In particular, as
Manakov & Shchur (1983) point out, p is typically much larger than 4 because 6« < k,, k,.
Also the orbital period 7 can be long. These effects are easily seen in numerical experiments
on vortex collisions as discussed at greater length in the following section.

4. NUMERICAL EXPERIMENTS

The accessible phase space of the type of vortex system under study here is unbounded for
all values of the two vortex strengths «, and «,. Thus, except for special cases (those referred
to as bound states in §3¢) the technique of constructing Poincaré sections, a standard tool for
studying non-integrable systems with bounded phase space, is not immediately available.}

t Jung (1986) has suggcsted an extension of the Poincaré¢ section 1dea to systems with unbounded phase space,
in particular those displaying * scattcrmg with clearly defined ‘ingoing’ and outgomg states. The application of
this technique to the present problem is reported by Eckhardt (1988a4).
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COLLISION DYNAMICS OF VORTEX PAIRS 663

However, the phenomenology of this problem suggests the study of scattering data such as an
appropriately defined scattering angle or the ‘scattering time’. Roughly speaking, the latter is
the time elapsed from the initiation of ‘strong interaction’ between incoming pairs to the
re-emergence of pairs freely propagating off to infinity, although in a system with long-range
interactions this quantity is only defined in some asymptotic sense. The signal defined by the
dependence of such data on initial conditions may be markedly different in different regions
of phase space and for different values of the parameters «, and «,.

In some régimes the scattering data are regular. In other régimes we have very complex data
suggesting a different type of vortex motion that we call chaotic scattering. (As discussed in §5
this kind of motion is observed also in other scattering problems.) For two vortex pairs one can
find régimes where the scattering process, as monitored by the dependence of scattering angle
or scattering time on impact parameter, displays highly erratic behaviour. This observation
was first made in a numerical experiment by Manakov & Shchur (1983). Our study provides
a more comprehensive view of this interesting phenomenon including some indication of how
it depends both on the ratio «,/k, = A? (see (3.9)) and on the values of the integrals of motion.
By successive changes in the resolution with which we determine the initial state we provide
highly suggestive numerical evidence that the scattering of two vortex pairs is truly non-
integrable. Indeed we see several analogies to the observed behaviour of this system and the
behaviour found in the rigorous analysis by Sitnikov of the restricted three-body problem (see
Moser 1973). We argue that the case A = 1, although still non-integrable, has regular
scattering data.

We start from the obvious but, nevertheless, important remark that the asymptotics of this
system are well described in terms of freely propagating pairs. When |{,| > |£_| the hamiltonian

H, (3.14) reduces to Hy ~ (I*/27) 4% In |+ £+ A2 In g, — £ , (4.1)

According to (3.12) this hamiltonian describes two non-interacting pairs, and according to §3a
each of these moves along a straight line. These lines can be used to define asymptotic
states. foee

For our purposes it is sufficient to consider ingoing states with pairs moving along parallel
lines. Formally (see (3.12)) this corresponds to the ‘vectors’ {y+¢_ and {,—{_ being parallel,
i.e. to

Im (§, &%) =0. (4.2)

In general this quantity is not conserved during the interaction of the two pairs. However, for
the integrable case §, = 0 it is conserved, trivially, and so in this integrable case, identified in
§35 and discussed further in Appendix A, we have that the outgoing pairs also propagate along
parallel lines. This is also true in the case A = 1 where exchange scattering may take place. If
the outgoing pairs are the result of an exchange and we need to use (3.12¢, ), then we see that
the directions are again parallel because a_ = 0 in this case, and we are assuming §, = 0.

The advantage of using incoming pairs moving along parallel lines is that we can define an
impact parameter geometrically as the distance between the two lines of propagation. Figure 1
shows the type of initial condition that we have used for our numerical experiments on
scattering. The pairs 1*1~ and 2*2" initially have separations 4, and d,, respectively. The
separation of their midpoints is assumed much larger than both 4, and d,. Both pairs are tilted
relative to the x-axis by an angle y. Let

D =+/(dydy); & =1+/(d\/dy) (4.34)
48 , Vol. 326. A


http://rsta.royalsocietypublishing.org/

A \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

664 B.ECKHARDT AND H. AREF

1+

Fiure 1. Initial condition (4.3) used in scattering experiments with vortex pairs.
The distance between pair centres is assumed much greater than both 4, and d,.

(compare (3.9)) such that

d,=Dd; dy=D/é. (4.3b)
The initial positions of the vortices are then given by
2P = D(Re¥118) e, z{¥ =—D(Re?+107") v, (4.3¢,d)
From these expressions we find
Q = I'D{AS— (A8)™"} cos y, (4.4a)
P =TI'D{Ad— (A8) "} siny (4.45)
and I = 2I'D¥A8+ (A8)™1} R cos . (4.4¢)

Thus, the integrable case @ = P = 0 corresponds to Ad = 1, or by (3.94) and (4.32) to
Ky dy = Ky d,. (4.5)
From the geometry of figure 1 the impact parameter b is given by
b= 2DR cos6. (4.6)
For the integrable, vanishing momentum case Ad = 1 and
b=1/2I'D. (4.7)

If for fixed I', D, A, 4, R and y, we change 6, the values of the asymptotic hamiltonian H,,
(4.1), @ and P are not changed. However, such a change does alter 7 and thus 4. In this way
we can explore the entire range of impact parameters. For plotting purposes we have used a
non-dimensional counterpart of 7,

I=1/TD? = (AS+ (A8)™Y} 4, (4.8q)
where & is a dimensionless impact parameter
| | §=6/D = 2R cos. (4.8b)

The quantity I 'will be found along the abscissa in figures 2, 3, 5, 6, 7, 13, 15 and 16, and along
the ordinate in figure 12.
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COLLISION DYNAMICS OF VORTEX PAIRS 665

(a) Regular scattering
We first discuss the two-pair scattering process for the integrable cases where numerical
experiments can be verified by quantitative, analytical developments as given in Appendixes A
and B. As discussed in Appendix A the case @ = P = 0 is particularly simple for A = 1. The
scattering angle, here defined as the angle through which the direction of motion of vortex
1* is turned by the scattering process, has been computed both by analytical theory and by
direct numerical experiment. The continuous curve in figure 2 gives the analytical result as

1.0~

cos (5¢)
=)
]

e
-

-1.0 ] | 1 3

' scattering parameter [

F1GUrE 2. The cosine of the change in angle 8¢ (related to the scattering angle, see text) against non-dimensional
parameter [for A = 1 and @ = P = 0 (integrable case) from analytical results in Appendix A (see also table 1).

obtained by numerical evaluation of the formulae derived in Appendix A. The abscissa is the
parameter [ defined above, (4.84), the ordinate is the cosine of the change in an angle ¢
introduced in Appendix A and simply related to the scattering angle (see below). We have also
computed (the cosine of) this change in angle by numerical experiments in which vortex pairs
were allowed to collide from an initial state of the type given in (4. 3) obeying (4.5).

There is a simple connection between the scattermg angle (as defined above) and the angle
¢ introduced in Appendix A or by =g/ C"‘ , : (4.9)

According to (3.12¢) the direction of motion of the pair 1*1” is given by —i{_. Hence, in a
direct scattering process the net change in direction of motion for this pair equals the change
in angle ¢ (see (A 3) and figure A 1). In an exchange scattering process, on the other hand,
the outgoing pair will be 1*2™ and according to (3.12¢) its direction of motion is given
by —i¢,. From figure A 1 and (A 3) it then follows that the scattering angle will be given by
the change in ¢ plus {n (for positive p,). Formulae for 3¢, the change in ¢, are derived in
Appendix A. For regular scattering when A # 1 we always have direct scattering, i.e. any
exchanges of partners cannot last forever, except in cases of trapping, and, thus, the scattering
angle equals the change in ¢. : ; :

The agreement between analytical and direct sxmulatlon results is traced- in table 1. As
explained in Appendix A the quantity that emerges naturally in the analytical expressions is
x = (2I/1)%. Hence table 1 lists cos (8¢) as a function of y (assuming units are chosen such that
I' = 1). The digits of all values shown in the column headed cos (8gnayiicar) 2re all significant.
To produce them we have integrated the expressions given in Appendix A using the methods

48-2
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666 B.ECKHARDT AND H. AREF

recommended by Press e al. (1986, chap. 4) for treating improper integrals. In the next column
headed cos (8¢,,m.exp.) We list values obtained by numerical scattering experiments. Thcﬂ
degree to which we approximate the asymptotic, analytical expression for a given value of /
must clearly depend on the value of R, (4.3), used in the numerical scattering experiment.
Unfortunately, this dependence becomes more sensitive close to the crossover value y = 1. The
values shown in table 1 were obtained with R = 150, a considerable initial separation for pairs
of linear dimension of approximately unity. Nevertheless, considerable deviations are apparent
as we approach y = 1. This is an important point for a proper appreciation of the results on
‘chaotic scattering’ in subsection (b), where we must rely entirely on numerical scattering
experiments. Our position is that the mapping of incoming states (i.e. infinitely separated
vortex pairs) onto ‘pre-collision states’ (vortex pairs headed towards each other as in (4.3)
with a finite value of R) is smooth, and thus spikes in a plot of cos (8¢) computed with some
large but finite value of R do reflect properties of the full scattering dynamics, although the
exact positions of the spikes and their precise shapes may be distorted in the manner
exemplified by table 1.

TABLE 1. SCATTERING DATA FOR THE INTEGRABLE CASE Q = P=0AND A =1

cos (8¢) cos (8¢) . cos (0¢) cos (8¢)
X : analytical numerical experlmeht X I analytical numerical experiment

0.2 4.472 0.998 '0.998 1.005 1.995 —0.973 —0.973
0.3 3.652 0.991 0.991 , 1.006 1.994 —0.956 —0.956
0.4 3.162 0.975 0.975 1.007 1.993 —0.939 —-0.938
0.5 2.828 - 0.945 0.945 1.008 1.992 —0.921 —0.920
0.6 2.582 0.889 0.889 1.009 1.991 —0.904 —0.903
0.7 2.391 0.787 0.787 1.01 1.990 —0.887 —0.886
0.8 2.236 - 0.594 0.594 1.02 1.980 —0.747 —0.745
0.84 2.182 0.467 0.467 1.03 1.971 —0.642 —0.640
0.88 . 2132 0.287 0.287 , 1.04 1.961 —0.559 —0.556
0.92 2.085 0.014 ©0.014 1.05 1.952 —0.490 —0.487
0.96 2.041 —0.449 —0.448 , 1.06 1.943 —0.430 —0.428
098  2.020 —0.812 —0.812 1.07 1.933 —0.379 —0.376
0.99 2.010 —0.991 —0.990 1.08 1.925 —0.333 —0.330
0.991 2.009 —0.998 —0.998 1.09 1.916 —0.291 —0.288
0.992 2.008 —1.000 —1.000 1.1 1.907 —0.254 —0.251
0.993 2.007 —0.994 —0.994 1.3 1.754 0.154 0.157
0.994 2.006 —0.975 —0.976 1.5 1.633 0.339 0.342
0.995 . 2.005 —0.939 —0.940 ‘ 1.7 1.534 0.453 0.455
0.996 2.004 —0.871 —0.876 , _ 1.9 1.451 0.531 0.533
0.997 2.003 —0.758 —0.761 2.0 1.414 0.562 0.564
0.998 2.002 - —0.543 —0.550 o 4.0 1.000 0.808 0.809
0.999 2.001 —0.085 - —0.099 ) 6.0 0.816 0.877 0.877
1.001 1.999 —0.943 —0.942 8.0 0.707 0.909 0.910
1.002 1.998 —0.996 —0.996 10.0 0.632 0.928 ©0.928
1.003 1.997 —0.999 —0.999 : 20.0 0.447 0.965 0.965
1.004 | 1.996 —0.988 —0.988 30.0 0.365 0.977 0.977

To improve the agreement in table 1 one may match pre-collision initial conditions to
asymptotic incoming pair states by asymptotic expansion of the equations of motion for widely
separated pairs. For an application of this technique to a gravitational three-body problcm see
Petit & Hénon (1986) and Spirig & Waldvogel (198s).

Two further comments are in order. The first is that because the outgoing pairs for this
integrable case move along parallel directions, the scattering angle can also be defined as that
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COLLISION DYNAMICS OF VORTEX PAIRS 667

angle through which the common direction of motion of the two pairs has been turned due to
the scattering. Later when we discuss scattering for non-vanishing momentum, the outgoing
pairs will not be moving in parallel directions. Thus, the scattering angle will always have to
be defined less symmetrically as the angle through which the direction of motion of the vortex
1* has been turned during the interaction. This was, therefore, chosen as the basic
definition.

The second comment is that although we could have integrated the reduced equations of
motion for ¢, {_ as developed in §34, we have chosen to integrate the full equations of motion
of the vortices in their original, ‘primitive’ form. We have found that the reduced system is
quite stiff, and thus numerically more troublesome than the primitive equations. This might
have been guessed from the steep gradients in the (r, ) plots of Appendix A. Except for this
remark the integration of a few coupled, nonlinear, obEs clearly does not pose any serious
numerical problems. The time-stepping routines used included fourth and fifth order
Runge-Kutta methods and an Adams-Bashforth predictor—corrector routine with adjustable
stepsize and order. Typically the integrals @, P I and H were conserved to within one part
in 10%.4

The most noteworthy feature in figure 2 is the sharp singularity at y = 1. The physical
interpretation of this is contained in the developments of Appendix A and is in fact already
familiar from the analysis of pair-line scattering for the three-vortex problem. As discussed by
Grobli (1877) and later Aref (1979) trapping can occur for certain values of the scattering
parameter corresponding to such values of the integrals that a steadily rotating state is possible.
The trapping state here is one of Havelock’s (1931) ‘double alternating rings’ mentioned in
Appendix A. It lies on a separatrix between a region of direct scattering and one of exchange
scattering. As I approaches a value at which trapping occurs, the scattering angle increases
indefinitely. The outgoing pairs are ‘thrown off” after more and more revolutions. Thus, the
cosine of the scattering angle, plotted along the ordinate in figure 2, oscillates violently as we
approach trapping.

The qualitative physics behind trapping is rather transparent and we want to make just two
remarks. We note that this singularity in the scattering angle against impact parameter occurs
for a situation that we rigorously know to be integrable. Hence, such a singularity, or a finite
number of them, or even a denumerable infinity of singularities with a clear smallest separation
between any two can presumably occur in an integrable scattering problem and should not
uncritically be interpreted as chaos. We shall return to this issue in the next subsection. Second,
we note that both in the direct and in the exchange scattering régimes the plot of scattering
angle against impact parameter is smooth. It is impossible to discern from a plot such as
figure 2 whether direct or exchange scattering is taking place.

We conclude this subsection by showing data for the integrable case of zero momentum with
A% = 0.9. A plot similar to figure 2 but this time generated exclusively by numerical scattering
experiments is shown in figure 34. Again we see the characteristic singularity at trapping. In
figure 35 we show a related plot. The abscissa is again the parameter /, the ordinate, however,
has been changed to the scattering time, i.e. the time elapsed from ‘start’ to ‘finish’ of the
scattering interaction. The operational definition is the time during which the distance between
vortices 1* and 2" is less than their initial (large) separation. Because asymptotically the motion

t Subsequent confirmations at higher numerical resolution are reported by Aref et al. (1988).
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0 )

cos (5¢)

scattering time - -
T

0 1 2 3

scattering parameter [

FiGure 3. Scattering data for regular (integrable) scattering, A* = 09, Q=P=0(Z=1).
(a) cos (8¢) against I; (b) scattering time against I.

is linear with constant velocity, the zero point of the scale on this axis is, of course, arbitrary.
By following the freely propagating pairs for longer the elapsed time can become arbitrarily
large in an absolute sense. The significant aspects of figure 35 (and later similar figures) are the
relative changes in scattering time as [is varied. Once care has been taken to be sure that initial
and final states are asymptotically free, this diagnostic is extremely useful as we shall see. We
see that in the exchange interaction régime (small [) the scattering time is longer than in the
direct scattering régime (large ). There is a spike, in principle infinitely tall, at the trapping
value. :

To probe the physical reasons for this step-like difference in scattering times between small
and large [ we show in figure 4 sample trajectories of the four vortices. Panels (a)—(c) are for
exchange scattering, panels (d)—(f) for direct scattering. The exchange in this case is of the
‘incomplete’ type described in §3¢: the pairs try to exchange partners but cannot then escape
to infinity because the intermediate pairs have non-vanishing total circulation. It is clear from
figure 4 that the exchange scattering processes must take somewhat longer than the direct

W@ A % (*) g © ’
4
(e )
‘ X
£

L

(d) $
\4
A

FiGure 4. Sample trajectories of four vortices for A* = 0.9 and Q@ = P = 0. Panels (a)—(c) show exchange scattering,
panels (d)-(f) show direct scattering. Values of [ are () 1.0; (3) 1.4; (c) 1.8; (d) 2.2; (¢) 2.6; (f) 3.0.
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scattering processes, the relative delay being due to the time it takes the intermediate pairs to
complete their respective loops. Note that because we are in the integrable case the outgoing
pairs always move along parallel lines.

(b) Chaotic scattering

Next we violate the condition (4.5) again for A*> = 0.9. We have measured the degree to
which (4.5) is violated by the parameter (cf. (3.9), (4.3))

P =26 (4.10)

Figure 5 shows plots of scattering angle and scattering time against impact parameter
corresponding to figure 3 but for a value of # = 1.05. Several spikes are immediately visible
in both panels. As we reduce / from the direct scattering régime, the first spikes can be
rationalized by appealing to the integrable case. There is again, one would assume, some kind
of trapping, maybe not just into a single, steadily rotating state but into several ‘channels’
including various oscillations of the steadily rotating state and other periodic motions. That the
situation is quite complex can be seen from figure 6 where we have gone over the scattering
parameter régime at the ‘upper edge’ in figure 5 in more detail. The abscissa in figure 6 has
been expanded by a factor 62.5 relative to figure 5. What in figure 5 seemed to be just a couple
of spikes resolves itself into a complex structure of several spikes of varying heights. (Note that
there is an upper cutoff on the time delay set by the duration of the computer run. The peaks
reaching up to the maximum ordinate have been arbitrarily truncated at that value. Taller
peaks are revealed by the increased resolution.)

1.0 10
| (&)
8l
0.5
o
£ .
s 3 6l
<o
g g 4
]
g L
—0.5]
9l-
—tob 1 ot b1y Byt T I T TN I A B
1 2 3 0 1 2 3

scattering parameter [

FiGurke 5. Scattering data for A? = 0.9, 2 = 1.05: (a) cos (8¢) against I; (b) scattering time against .

In figure 7 we show yet another blow-up of the scattering data. The abscissa has been
expanded by an additional factor of 10 relative to figure 6, and thus in all by a factor of 625
relative to figure 5. Again considerable structure is seen in these diagnostics. One must, of
course, have consistency between these various diagrams in that a feature seen in one should
also appear in the expanded version(s). This test is not immediately convincing to a visual
inspection. To explain this we recall the way in which this data is being generated. In each case
we step with some resolution over a given interval of scattering parameter. Hence, the
proximity to any particular peak will inevitably vary, and the peak may show up slightly
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FiGure 6. Data similar to those in figure 5 with the J-axis expanded by a factor 62.5.
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Ficure 7. Data similar to those in figures 5 and 6 with the I-axis expanded by a factor 10
relative to figure 6, 625 relative to figure 5.
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displaced and with a different height on the higher resolution plot. Many additional peaks will
typically emerge also. An accurate identification of individual peaks from one resolution to the
next is in fact difficult even if L-values are carefully duplicated when increasing the resolution
(as we have also done). The overall impression of extremely complicated functions with
variations on several scales of resolution in the scattering parameter Iis, however, accurate
and reflects the highly non-analytical character of these functions. This complexity in the
scattering data is an example of chaotic scattering.

We have attempted to identify some of the physical processes responsible for the complex
behaviour seen in figures 5-7. We have already seen in the integrable case the possibility of
what we might call ‘double exchange’ interactions (figure 4, panels (a)—(c)) where the first
exchange must be undone by a second before pairs can be formed that can fly off to infinity.
For small 7 this process happens also in the non-integrable case as we expect from figure 5 and
see in figure 8 (panels (2)—(d)), where trajectory plots corresponding to the scattering plot in

figures 5-7 are shown.
() (¢)
(o) NY2
¥
%QL
o=
Ficure 8. Sample trajectories of the four vortices for A? = 0. 9, 2 = 1.05. Values of [ are (a) 0.5; () 1.0; (c) 1.1;

(d) 1.2; (e, ) 1.3. Processes in (a)—(d) are simple double exchange interactions. Process in (¢), (f) is described
as EDE in the text. (Panel (f) continues (¢) for clarity.)

In figure 8 panels (¢)—(f), however, we see a different sequence that we refer to as EDE
(where E stands for ‘exchange’ and D for ‘direct’). Panel (¢) shows the first E and the D
interaction. For clarity the second E interaction is given separately in panel (f). When
evolutionary sequences are split between panels in this way, as we shall do on several occasions,
there is usually a bit of overlap between the two panels to facilitate the conceptual continuation
of the motion. The values of parameters are such that this process, possibly adorned by various
oscillations, appears to be responsible for the first step in figure 5 from /=~ 1.25 to I~ 1.7.

Even more exotic motions can be found in the region between the taller peaks in figure 5.
Figure 9 shows one example for I = 1.75. It consists of an exchange interaction followed by four
direct scattering interactions and terminated by another exchange interaction undoing the
first. Symbolically we write it as ED*E.

We can speculate that an entire hierarchy of scattering ‘channels’ exists, where the pairs first

49 Vol. 326. A
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FIGURE 9. Vortex trajectories for A2 = 0.9, # = 1.05, [ = 1.75. We observe (a) an exchange interaction followed
(6)—(e) by four direct scatterings and (f) resolved by a final exchange (recombination). This process is
designated EDE in the text.

have an exchange interaction, then several direct scatterings and finally an exchange
interaction to restore the original pairs. Using an obvious notation we label these processes
ED"E, where 7 is an integer. We have shown examples of these for n = 1 (figure 8, panels (¢)
and (f)) and n =4 (figure 9); EDE appears in figure 11. Clearly the suggestion that such
motions exist for arbitrary n is not unreasonable. Because this step-like structure repeats on ever
finer scales in J, we conjecture that the plot of scattering time against impact parameter forms a
so-called ‘devil’s staircase’. We may correlate this suggestion with the observation from figure 5
that the scattering time shows distinct steps almost as if it were ‘quantized’. The difference
in time delay between the E? scattering, seen for small 7, and the direct scattering of the original
pairs, seen for large I, is one such time delay ‘quantum’. A histogram of scattering times for
all the data making up a plot such as figure 6 clearly shows quantized steps with relative rarity
of long values of the scattering time. Part of this suggestion is that the total time delay for given
I, in units of the delay ‘quantum’ just mentioned, is in fact just the integer 7 in a process
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ED”E. This ‘rule’ seems to work for the couple of examples we have investigated in detail, but

- P P g ;

< as we shall see in a moment other dynamical processes are available as well.

S y P

oH The picture that we have sketched here is in essence that proposed by Manakov & Shchur
= 1983) on the basis of more limited numerical data. We have added the important observation
— 3 P

= that the scattering data shows structure on ever finer scales in impact parameter, a feature that

- we feel is essential if one wants a sensible concept of chaos in a scattering problem. This feature
W

is in some ways analogous to the issue that arises when deciding whether a numerically
generated Poincaré section for a system with bounded phase space indicates chaotic behaviour
or not. Any finite number of points in such a section can, in principle, lie on a contorted but
smooth curve. Similarly, a finite number of numerically generated peaks in scattering time or
scattering angle data could, in principle, be due to complicated but regular scattering
dynamics. The appearance of new peaks at increased resolution is the more compelling
evidence. The interpretation of the scattering data in terms of physical space processes,
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precisely identifiable states and evolutionary patterns of the four-vortex system (as in figures 8
and 9) is an attractive feature of this problem.

As we increase I towards and slightly beyond the ‘upper edge’ around 2.0 in figure 5, we
observe also counterparts of the trapping motions seen so clearly in the integrable case of the
previous subsection. Figure 10 provides six examples of vortex trajectories as I is increased
from 2.01220 to 2.01230. In panels (a)—(d) we see E? interactions ‘ topologically similar’ to those
in figure 8. Over a narrow range of / we then observe a transition to motions that look like finite
time trapping (panels (¢), (f)): the vortices all rotate rapidly about some centre only to be
thrown off after a few revolutions. The evolutionary patterns (a)—(d) show a ‘winding up’
during the first collision as conditions come closer and closer to trapping. The type of motion
seen in panels (¢) and (f) of figure 10 we designate by the letter T. It seems distinct from the
ED"E sequences discussed above, although it may be a degenerate form. We note that a state
of the four vortices rotating rigidly implies = P = 0. Hence these motions may only be
available for small perturbations away from integrability.

RRESES
#@)Jf X

Ficurke 10. Irregular trapping occurs close to £ = 2. These trajectory plots are for A* = 0.9, 2 = 1.05. [ increases
in steps of 0.00002 from 2.0122 in (a) to 2.0123 in (f). Panels (e) and (f) are examples of motions designated
T in the text.

Whereas the E? interaction for [ = 2.0122 yields to a T interaction as I increases, decreasing
I leads to an evolutionary pattern that we would label ETE. We found that at [ = 2.01128
the E? configuration is highly symmetric (figure 11;). For slightly lower [ = 2.011275 (figure
114,7) trapping occurs as an intermediate state leading to an ETE sequence. This in turn yields
to ETDE for [ = 2.01127 (figure 11¢—g). At lower values of I the T state becomes D? leading
to ED’E observed at f = 2.011 (figure 114—d). In another sequence (not shown) for J changing
from 1.9880 to 1.9881 we have observed the transition EDTE - EDE. Increasing I beyond
the upper limit in figure 10 we have observed the T state to spawn TDE for [ = 2.01444, TDE
for [ = 2.01445 and TE for [ = 2.0145.

One may now speculate that there exist processes TD"E and ED"TE for arbitrary integer
n, and indeed entire sequences ...TD™TD'..., where m,/,... are different integers. The
sequences can start and terminate with either an E or T interaction. These possibilities suggest
also how one can introduce a symbolic dynamics for this scattering problem of the same general
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Ficure 11. Transition for A* = 0.9, # = 1.05 from ED’E at I=2.011 ( a) (d)) to ETDE at I'=2.01127 (()-(2))
and ETE at [ = 2.011275 ((h)—(i)). A very symmetric E? interaction is observed at [ = 2,01128 (j).

nature as that for the restricted three-body problem (see Moser 1973). For now, however, the
details are sketchy.

The hierarchy of interactions explains the origin of the fractal structure seen in the scattering
data. When we have an entire sequence of interactions, e.g. ETD?E, the initial value of [ selects
whether we start off with E or T. However, once that choice has been made this first interaction
stays essentially the same and the sensitivity to small changes of [ is transferred to the selection
of whether the second interaction should be an E,DorT. (In figure 11, for example, the initial
E interaction is virtually identical in panels (a), (¢), (%) and (j). The second interaction varies
from D to T to E.) In this way a finite interval of [ is ‘mapped’ onto smaller intervals of the
impact parameter characterizing the second interaction process. If this second process is D or
T, further sensitivity is available. The interval of impact parameters for the second interaction,
and thus 7, is then further subdivided according to different possibilities for the third
interaction, and so on.

We have explored the scattering data for A? = 0.9 and various values of 2, (4.10). As shown
above a 59, increase of this ratio above the integrable value & = 1 results in highly complex
scattering data that we have associated with chaotic behaviour. A corresponding decrease of
5% in 2 to 0.95, however, results in apparently smooth scattering data differing very little
from figure 3. Not until we reach Z &~ 0.8 do we begin to see complex structure in scattering
data comparable to figure 5. We have no immediate explanation of this asymmetry.
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Figure 12 is a crude attempt to summarize several plots of the type shown in figure 5. Along
the abscissa we have the ratio 2, along the ordinate the scattering parameter I, with the
interval where complex structure of scattering data is observed shown by a vertical bar. The
width of this region vanishes at # = 1, and as we have just mentioned widens considerably
more quickly on the side 2 > 1 than on the side 2 < 1. Of course within each FLinterval there
are typically gaps, where the variation of scattering data is quite smooth, separated by thin
regions with peaks and violent variations. Our bar graph in figure 12 does not reflect this fine
structure. '
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FiGure 12. A plot of the interval in f for which irregular scattering data are observed
as a function of 2 for A? = 0.9.

When the ratio £ is increased far beyond unity, plots of scattering data change character.
Figure 13 shows scattering angle and time against [ for 2 = 2.2. The step-like appearance of
the scattering time is no longer in evidence, and the window of chaotic scattering is
considerably narrower. For this value of 2 we have initially one pair of closely bound, strong
vortices (2*27) and one pair of widely separated weaker ones (1*17). It is therefore natural to
interpret these data in terms of collisions of a vortex pair with a single vortex in the field of a
more distant second vortex. Figure 14 shows vortex trajectories corresponding to the data in
figure 13. The tightly bound pair (2*27) impinges on one of the vortices (1*) in the loose pair.
A brief exchange interaction takes place and a small loop traced out by 271* is visible. Another
exchange interaction reproduces the original pairs. The wide bump for small [ in figure 135
is due to the two outgoing pairs propagating side by side for some time before becoming
asymptotically free.

For [~ 3.72, in the middle of the chaotic régime seen in figure 13, we found the following
complicated motion (figure 14, panels (d)—(%)). (d) The pair 2*2" collides with 1*. Two non-
neutral pairs 271* and 2*1~ are formed. The latter pair has a separation approximately equal
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F1GURE 13. Scattering data for A = 0.9, 2 = 2.2: (a) cos (8¢) against I; (b) scattering time against 1.

to the original separation of the pair 1*17. (¢) The pair 2*1~ orbits on a large circle. The pair
271" orbits a smaller circle because the size of this pair when it is formed is much smaller. The
pair 271* completes many orbits (about 30; the solid black ‘apple-shaped’ region), whereas the
pair 2*1” completes one. (f) As all four vortices approach several direct scatterings take place.
(g) The pair 2*17 re-emerges for another large circle orbit. The pair 271* again completes
several cycles (about nine) of a precessing circular orbit of smaller radius. (k) At the next close

— aproach of all vortices an exchange interaction re-ejects the original pairs.
; . This particular sequence exemplifies the possibilities for chaos in this parameter régime. Tiny
O changes in impact parameter can now trigger different ratios of orbital frequencies for the two
e g pairs set up by the initial exchange. In turn the ratio of orbital frequencies determines the
= O ultimate angles at which pairs re-emerge from the scattering region. In the chaotic régime the
E @) scattering angle again becomes a random function of scattering parameter.

v

As a final view of the variation of scattering data with system parameters we show in
figure 15 plots of the scattering time against impact parameter for # = 1.1 and A% = 0.95,
0.9 and 0.8. The range of I-values leading to chaotic scattering clearly decreases with A.
We also observe that the steps in the scattering time decrease with A. One can rationalize
these observations by noting that as A -0 one pair becomes simply a passive advectant in the
velocity field of the other. In this limit there is no chaos. The surprise is that this effect is
observable at such a large value of A? as 0.8.
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The complicated sequence (d)~(#) is explained in the text.
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FIGURE 14. Vortex trajectories for A2 = 0.9, 2 = 2.2 and (a) [ = 1.0; (b) 2.0; (c) 3.0; (d)—(k) 3.72; (?) 4.0.
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Ficure 15. Scattering time against impact parameter for # = 1.1 and (a) A? = 0.95; (4) 0.9; (¢) 0.8.


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

678 : B.ECKHARDT AND H. AREF

(¢) Thecase A =1

From figure 15 one might expect that the case A = 1 would be the most violently chaotic:
the two pairs enter on an equal footing, and because complete exchange is possible, peaks in
scattering times can easily reach infinity. Numerical experiments indicate otherwise. In
figure 16 we show scattering data for A = 1, # = 1.05. There is no hint of chaotic scattering.
From our previous investigations a qualitative reason for this is not far to seek. The essential
ingredient that is available for A # 1, namely the formation of non-neutral intermediate pairs,
that can loop around in a kind of nonlinear resonance, as seen in several examples in the
previous subsection, is simply not available for A = 1. Evolutionary patterns such as ED"E
above cannot arise. Exchange interactions go to completion and the newly formed pairs fly off
never to interact again.

Nevertheless, so far as we have been able to determine the four-vortex system with
circulations k, = k, = —k; = —k, is not completely integrable. If we look at bound-state
motions, where the two positive vortices are placed close to one another, and the two negative
vortices are placed closely, but the positives are far from the negatives, the vortices of either sign
stay together as the entire configuration translates along. Numerically generated Poincaré
sections (with several different methods of sectioning) in this case strongly suggest non-
integrability. A detailed report on these results is postponed until a later publication. However,
as we have just seen, the scattering dynamics appear entirely regular.

We do not have a comprehensive understanding of why the problem with A = 1 appears
more regular than the general case A # 1. However, we have discovered a continuous
symmetry of the transformed hamiltonian (3.14) that apparently hinges on special groupings
and cancellations that occur for A =1. For A=1 (and I'"=1) the hamiltonian can be

writtcn‘ Hy,=—(2m) ™ n|(@&—8)"— (@ —2). (4.11)

This expression is clearly invariant under the transformation

Teit>ln L, (4.120)
where E-g=e¥2-0), . (4.125)
E-g=e%e-8) (4.12¢)

and ¥ is assumed real. The infinitesimal generator of J is given by (4.12) expanded to linear
order in ¥, namely

£ —¢, =8P -8/, (4.130)
-t =4HP(E -8/ (4.135)

For {, = 0 the transformation 7 is simply a rotation. For {, # 0, 7 is not canonical as the
reader may verify by straightforward calculation.

We note that two states of the four-vortex system related via (4.12) have the same values of
the integrals of motion @, P and H, yet are not connected by an evolutionary phase space
trajectory. To see this consider any four-vortex state (z{”, 2{”, z{", z{”). Compute the variables
o5 &o» €+ (3.10). Next use (4.12) with some prescribed value of ¥ to compute transformed
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1.0—

0.5

cos (3¢4)
=
I

-1.0
0 0.5 10 1.5 20 25 30
scattering parameter [

Ficure 16. Scattering data for £ = 1.05 and A = 1. This plot should be coinpared with ﬁgufes 5-1.

variables fi (retain ¢, and fo). Now use the inverse formulae (3.11) (with both A and I set to
unity) to compute a new four-vortex state

(#2280, 80,20) = T (2", 270, 287, 2) (4.14)

from &, fo and the transformed fi. Except for special values of ¥ and/or the integrals of
motion the two states (z{P,2{7,2z",287) and (2P, 27, 2P, 2{7) will be different. The integral
I'will, clearly, be preserved under this transformation when {; = 0. When {; # 0, I depends on
the position of the origin of coordinates and we can arrange that I = 0 and I = 0 by a simple
shift of coordinates (which does not alter the values of Q, P and H).

We envisage that the relative regularity of the A = 1 case is due to the existence of this
transformation which might establish a one-to-one correspondence between scattering states
that are not related by time evolution. However, we do not see in detail how such a reduction

of the problem comes about.

5. CONCLUDING REMARKS

Vortex pairs are readily produced in two-dimensional flows and a variety of dipole vortices,
for which the point vortex pair is the simplest model, have been studied extensively in
connection with laboratory and geophysical flows. Vortex-pair formation has been studied via
numerical simulations by Aref & Siggia (1981), Aref (1982), McWilliams (1984), and others,
and via simulation and laboratory experiment by Couder & Basdevant (1986). Vortex-pair
collisions were attempted in a laboratory experiment by Tatsuno & Honji (1977) and more
recently by Couder & Basdevant (1986). For the finite-area counterpart of the integrable,
coaxial pair collisions precision computations have been published by Overman & Zabusky
(1982) and by McWilliams & Zabusky (1982). The closely related problem of vortex pairs in
a two-layer fluid has been considered by Hogg & Stommel (19854, ) who call such entities
hetons. In the numerical experiments performed by these authors many features analogous to
those seen in the simpler point vortex model are apparent. All these examples show that the
dynamics of interacting vortex pairs is of considerable importance as a basic ingredient in more
complicated flows.

One of the main inadequacies of the point vortex model relative to more realistic finite-core

50 / Vol. 326. A
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680 B.ECKHARDT AND H. AREF

vortices is that vortex merging events are ignored in this model. Real discrete vortices of the
same sign will frequently orbit each other only for a finite time before a merging event takes
place that reduces the number of distinct vortices by (at least) one. Like-signed point vortices,
on the other hand, will orbit each other forever. Hence, the chaotic motion observed in the
problem of four identical point vortices (cf. part 1 and Aref 1985) may be of limited relevance
to applications because isolated real vortices would not survive for a sufficient length of time
to observe the effect.

The form of chaos observed here, however, may suffer less from this drawback. In scattering
problems we are concerned with processes in which the vortex pairs interact for a finite time
with only a few close encounters. Pairs of discrete, real vortices with finite cores could possibly
survive such sequences without merging. Thus, the chaos observed in point vortex-pair
interactions may have more easily observable counterparts in real fluids. In view of the results
of numerical and laboratory experiments on two-dimensional flows (see the references given
above) where vortex pairs are observed in abundance, the mechanisms documented here are
thus likely to be important for an understanding of chaotic and, maybe, ultimately turbulent
behaviour. The details of how chaos observed in deterministic few-vortex models is related to
statistical flow régimes in conventional shear flows is, of course, still a formidable challenge (cf.
Aref et al. 1987). ;

We mention that the notion of chaotic scattering pursued here for vortices appears to be a
general feature of open systems in which intermediate complexes of long but finite lifetime can
be formed. In the vortex system (+«,, +«,) with ; # «, these intermediate complexes are the
pairs (+k,, —K,), (—Ky, +&,). This terminology is borrowed from chemical physics where
phenomena closely analogous to what we observe in this classical, fluid-mechanical system
have been demonstrated. For example, Noid ef al. (1986) report apparently fractal scattering
data in numerical experiments on a two degree of freedom model of He+ I, collisions. Earlier
work includes papers by Gottdiener (1975) and Agmon (1984). One of the earliest references
is Rankin & Miller (1971). The term chattering has been introduced for such phenomena, an
obvious concatenation of chaotic scattering. Chattering in the gravitational three-body
problem has been discussed by Spirig & Waldvogel (1985) and by Petit & Hénon (1986).
Eckhardt & Jung (1986) have observed chaos in scattering of a particle by an exponentially
damped Hénon-Heiles type potential. Campbell et al. (1986) discuss regular and irregular
behaviour for kink-antikink interactions in the Sine-Gordon equation. Recently Eckhardt
(1987) has considered elastic scattering (reflection) of a ray off three cylinders arranged in an
equilateral triangle. The chaotic scattering observed here suggests applications of the concept
to the topic of ray tracing.

We anticipate that chaos in scattering problems is a widespread phenomenon and that many
examples will be discovered and discussed in the near future. In many instances this type of
chaos is at least as important for applications as the well-studied case of chaos in systems with

bounded phase space. It is gratifying that the classical point vortex model of Helmholtz

provides the first example of chaos in a scattering problem of relevance to fluid mechanics.

H.A.is indebted to Dr N. Pomphrey for contributions to this problem, in particular portions
of the analysis of integrable cases, dating from 1980 to 1981. B.E. thanks Professor P. H.
Richter and Dr C. Jung for discussions.
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AprPENDIX A. THE INTEGRABLE CASE Q=P =0
The hamiltonian is Re 5, (3.18), or

Hy(§=0) = (I'*/2r){(A*+27%) Inj¢_|+In|(§1— (@_ L))/ (1 — (. LB (A1)
Fr‘om‘ (3.17) we know that the key variable is {_ and from (3.15) that

I=2Re (L. LY. (A2
is an integral of the motion. These observations lead us to the canonical transformation
L L=t L=—(p/r—ip) e (43)
The canonical commutation relations:
lo:p,] = [$.05] = 1 : (A4)
(all remaining Poisson brackets vanish) are equivalent to
[£.81=0; [£,0]=—2 | (A5)

Substitution of (A 3) into (A 1) gives

PR (pE— (pp,)E—a® p*)2+4(pp, )% = A{(p2— (pp,)*— 2 p*) 2+ 4(pp, 1)}, (A 6)
where % = exp (4nH,/I'?) (A7)

and where, according to (A 3) and (A 2)

py=—Re({, ) =—3/ (A8)

is an integral. The hamiltonian (A i) does not depend on its conjugate variable ¢.
A ‘phase plane’ analysis of this system is now obtained by introducing variables

, r=p"/Itgls 1 =1;/It, - (A9)
and plotting level curves of
fA"H-g (1 —rp— ol 72) +4rp
(1—rp—alr®)+4rp =%

(A 10)

where x = 4RI, (A 11)

This is most easily done by noting that (A 10) is a quadratic polynomial in x = 1p- To write

it in a convenient form let
2 -2 B
a, _a+x aZn A%+ . (A12)
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for n =0,1,2 and note that
a, = (o2 +a?)a,— (@, 0 ) a,. (A 13)
Then (A 10) becomes
a®+6x+c=0, (A 144a)
where @ = a,, (A 145)
6 =2(ap+a,1%), | (A 14¢)
c=ay—2a,r*+a,r, (A 144)

= go{l — (o, @ )2 *} + a,{(a® + o) P — 2} 1%

Figure A 1 shows the (r, p) phase diagram for A = 1. (For clarity of presentation we actually
plot p against Inz.) In this particular case (A 10) simplifies considerably. Figure A 2 shows a
corresponding diagram for A® = 0.9. It is easier to discuss this ‘generic’ plot first and then
return to figure A 1 as a limiting case. We clearly see that the plot in-figure A 2 is dominated
by three singular points, two elliptic fixed points on the r-axis and a hyperbolic (saddle) point
away from that axis. The two elliptic points can be easily understood from (A 10). One
corresponds to a_r = 1, the other to a, r = 1. The values of y are 0 and 00, respectively. These
points correspond to singular limits of the dynamics. The hyperbolic point, on the other hand,
is entirely accessible and corresponds to a steadily rotating state of the four-vortex system. The
diagram shows that this state is unstable because it is on a separatrix extending to infinity.
Physically the uniformly rotating state can disintegrate into two freely propagating pairs. Some
of these motions correspond to trapping in two-pair scattering as described in §§3¢ and 44. For
the integrable case under discussion here this trapping is analytically calculable. In practice,
however, the resulting formulae are extremely complicated.

Aol ﬁas

Inr

Ficure A 1. ‘Phase plane’ trajectories for pairs with vanishing momentum and A = 1. The classes of curves
labelled &, p, 6, 1, ® and the + signs are explained in the text.

We have found the steady states directly in a straightforward if somewhat tedious calculation
that will not be reproduced here. The result is that these states are given by the parametric

tati
representation 2 = S[2A T (14AY £]; 42 = — k2D, (A 150y
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3
b4
! 1 1 i
0 0 1 2 3 4
Inr

Ficure A 2. A ‘phase plane’ diagram similar to that in figure A 1 but for A < 1 (actually A? = 0.9).

where s is a free parameter that sets an overall scale for the configuration and the speed of
rotation,

£ = 24/[L 4/ (42— A2+ 1)] (A 158)
with o AsI2ean) (A 150)
and cos (2Q) = [—14++/(A*—A2+1)]/ 4% (A 15d)

The configuration rotates about the poiht of intersection of 1*2* and 172" (chosen as the origin
in (A 154)). The corresponding value of y is

xc=( a4 )"A+\/(A4—A"+1)

1+ (A —A7+1) (A+1)? (A 15¢)

~ Note that for A =1, we have A =1, £ =1, Q = ir (or $n) and x, = 1. Also note that in
figure A 2 the elliptic fixed point at p =0, r = 1/oc_ moves off to r = c0. Hence, figure A 2
becomes figure A 1.

Samples of the steady states given parametrically above are plotted in figure A 3 for various
values of A. The case A = 1 leads to the smallest of a family of states discussed already by
Havelock (1931) and called by him ‘double alternate rings’. In the rhombus that arises for
A =1 the opening angle is ir.

The phase plane analysis gives an overall view of the various possible régimes of motion. To
make detailed quantitative statements on time evolution we must return to the equations of

motion such as .
o= 6H2/6p¢. (A 16)

This equation gives ¢ in terms of p and £,- Equation (A 6) can then be used to relate p and
p, for given values of the integrals / and . Similarly an equation for p can be obtained. The
variation of ¢ with p can then be found by integrating d¢/dp = ¢/p. Although possible in
principle this procedure becomes very complicated for general A due to the appearance of the
exponent A2+ A7? in (A 6). In general the results do not appear to be expressible in terms of
known functions. For A = 1, however, the constraint ¢, = 0 reduces to a point symmetry (see
§3¢) and tractable formulae result. We shall give the details for this case.
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(a) - +

- ’ +

®)

p—

(d) +

Ficure A 3. Steady states of rotation for two pairs of vortices. The lines shown connect vortices of the same sign.
The sign (+ or —) is shown at the location of vortices z{*. The smallest of Havelock’s ‘double alternate rings’

(a thombus) arises for A =1 (top). As A decreases the steady state becomes a small (equilateral) triangle
orbiting a distant, single vortex.

For A =1 (and for convenience we rescale length and time so that also I'=1), (3.20)

reduces to ' ) i e
&=z @-0) | (A 17a)

i
n §+ (ﬁ - ﬁ)
Substituting (A 3) into the second of these and resolving real and imaginary parts of both sides
e get dg _¢_ I p'=I"+3(pp,)’ |
dp~ p P, P =3I+ (pp,)? (A 18)
or in terms of the variables 7, p introduced in (A 9).

dp _Id$ I r~—1+3p

dr _ 2pdp 20%, *—341p

(A 17b)

1 =143

- i21'\/(1;0) =3+’ (A 19)
where the overall sign is given by the signs of I and p,.
Here 7 and p are related via (A 10), i.e. for this case by
| P(141)? = x{(1—1p—12)2 +drp}. | (A 20)

We solve this quadratic for 7p in the form -
1+7p = (Px£Q)/ (" —x), ‘ (A2la)
where Q = V{rx[(r*—4) (" —x) +r°x]} = rv{x[(" —2)*—4(1—x)]}- (A21b)
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In figure A 1 we have labelled the level curves shown as &, p, 6, T and ®. For & and p we
have (0 <)y <1, x > 1 for T and ®, and G is the separatrix y = 1. The upper branches of ®
and 7 arise from (A 21a) with the plus sign, the lower branches with the minus sign. Along ©

and p the sign to be used in (A 21a) changes as described below. The signs to be used for the
different parts of the separatrix ¢ are shown in the figure. The saddle point is at (7, p) = (1/2,
3V2), and the separatrix has the asymptotes r =1 and p =1, and intersects the r-axis at
(vbt1)/2.

For y > 1 we always get two branches. The positive sign in (A 21a4) gives the upper branch
corresponding to exchange scattering. The negative sign in (A 21a) gives the ‘bubble’
corresponding to bound motion. This ‘bubble’ meets the r-axis at two points r = r, where

ry ={V1+4x) £ 13/2v/ . (A 22)
Note that the topology shown in figure A 1 is corroborated by simple results such as
{V(1+4x)—1}/2v/x 2 3(v6—1) <> x(x—1) > 0. (A 23)

For 0 < ¥ < 1 we again get two branches both corresponding to direct scattering. The sign
to be used in (A 214) changes along these branches. The changes in sign occur at the positions

of the zeros of @, namely
r=g¢,=2(1+v(1-Y%)). (A 24)

For the small-r segment, used for calculating direct scattering below, we note that y < g¢_.

Consider now starting off two vortex pairs from an initial configuration of the type described
by (4.3) and shown in figure 1. An easy calculation gives the values of p and p, as (recall
Ad =1 for the integrable case)

p=D, and p,=2DRsinf, ¢=1. (A 25a—)

Thus, (cf. (4.6) and (4.8))
r=1/2R cos@ = 2/I (A 254)
p = 2R sin*6/cos @ = 4R? sin? 6/ 1. (A 25¢)

For fixed 6(# 0) we thus start out in the phase diagram of figure A 1 at a large value of p and
finite 7. .
Substituting (A 214) into (A 19) we get after some simple algebra

g_g - 4%(r2(x—r21)—f xt Q)%(l * 22)()' 420

(The overall sign has been omitted here so as not to confuse it with the % in front of Q. The
latter leads to various branches in the (r,p) diagram as explained above.) To evaluate the
change in ¢ for exchange scattering we must integrate (A 26) from * = x to c0. Thus

(8¢)exchange=f: er—z(rg( r—X )i(1+2gx)dr2. | (A 27)

x—1)+x+@Q
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686 B.ECKHARDT AND H. AREF

For direct scattering we must first integrate (A 26) with the plus sign from 7* = y tor® = ¢_ (see
(A 24)). Then we must integrate (A 26) with the minus sign from 7* = ¢_ to r* =12 (see
(A 22)). By symmetry the total change in ¢ is twice these integrals. Thus, '

=2 [, galrg=a) (-7

—2L_ ﬁ(rz(x—rzl)—fﬁ Q) (1 +2er) dr. (A28)

The integrals (A 27), (A 28) were evaluated numerically. In so doing it was occasionally
useful to eliminate certain singularities of the integrands at the limits of integration. For such
transcriptions the identity

@ —{r(x—1) +x}* = (" —x) (" —r2) (" —13) (A 29)

is useful. Figure 2 and table 1, described previously in §4a, show the results. For direct
scattering (A 27) gives the scattering angle directly. For exchange scattering (A 28) differs
from the scattermg angle by in as described in §4 4. In the limit R— oo the parameter x and
the parameter I introduced in (4.8) are related by

x =4/ (A 30)

An analytical expression for the scattering time (cf. figure 3) can be derived similarly.

APPENDIX B. COAXIAL PAIRS
The hamiltonian is given by (3.14) where by (3.10)

G =il (Ay; +A7'y,), (B 1a)
&y = x,+ %, (B 1b)
§=x—x, (B 1¢)
£ =il(Ay;—A7"y,). (B 1d)
We have used the notation x, = " = 47, x, = 2P = 2,y, = ¢y{P = -9V, y, = yi? = —y.

We shall always assume y, > 0. For pairs propagating in opposite directions we then have
¥, < 0. We refer to this case as opposite polarity. For pairs propagating in the same direction
¥, > 0. We refer to this case as same polarity.

Conservation of the hamiltonian gives the relation

: By g a2 16— (e, Go+a_8 )7 _
ot Pl T — g ®2)

where £ is given by (A 7). For {, # 0 we now set
L=t C=ikE | (B 34,5)
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Then £, are real and (B 2) becomes

1£24 (a,+a_g)?
£+ (a_+o,7)?

where X = VA/GE (8 5)

11+ 11— =X (B 4)

(This is not the same quantity for which we used the symbol y in Appendix A. However, it
plays an analogous role, and so the nomenclature has been retained.) We note that

Ay —Aly,

e Bo

so —1 <9 < 1 for same polarity and || > 1 for opposite polarity.
Consider again the simple case A = 1 (and I" = 1) for which (B 4) simplifies to

1—7° (£ +1) = x(E+9°) (B7q)
or, resolving the absolute value sign for the two cases
same polarity: E+x+1)(PP+x—1) =x% (B17b)
opposite polarity: (E—x+1) (P —x—1) =x% (B17¢c)

These equations represent hyperbolae in a (£%,%?) ‘phase plane’.

Figure B 1 shows the construction of the hyperbolae (B 7) for the three different cases
0 < x <1 (panels (a), (d), left column), y =1 (panels (), (¢), middle column) and y > 1
(panels (c), (f), right column). The top row is for same polarity, the bottom row for opposite
polarity. We note that the lower branch of the hyperbola in panel ( f) is never in the physically
acceptable region £ > 0,7 > 0. In figure B 1 the ‘physically accessible’ part of a hyperbola,
£2,7% > 0, is shown in full, the physically inaccessible part is shown dashed. ,

The interpretation of these diagrams is straightforward from (B 1). Trajectories in which £
can tend to infinity correspond to evolutionary paths in which the vortex pairs separate
arbitrarily. Trajectories for which the vortex pairs can pass each other reach £=0. In
figure B 2 we show trajectories of the vortices corresponding to the different cases identified in
figure B 1. A case-by-case interpretation follows. ’

Opposite polarity

We can apparently always consider initial conditions in which x,—x, is positive and large,
so that the vortex pairs run up against each other. For y > 1 (panel (f)) they never pass one
another (£ > 0 always) but |y, —y,| - 0. An exchange scattering interaction has taken place
as shown in figure B 2, and new pairs 1*2™ and 2*1” ‘have formed’ that depart symmetrically
to y = £ 0. ' ‘

We note that the simplest case of this type, {, = 0, is not covered by this analysis. In this case
all four vortices describe geometrically similar paths and the motion corresponds to that of a
single vortex impinging on a 90° solid corner. It is a classical result (Bassett 1888; Lamb 1932),
easily seen from (B 2), that the trajectories then are so-called Cotes’s spirals, namely

x*+y~? = const. (B 8)
51 Vol. 326. A
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Ficure B 2. Real space trajectories of vortices corresponding to the phase plane trajectories in figure B 1. Values
of ¥ do not correspond exactly but were chosen to bring out qualitative features of the motion with greatest
clarity. (a)—(c) These trajectories are for ‘same polarity’: (a) the ‘slip-through’ mode; () crossover to (c)
‘leapfrog motion. (d)—(f) These trajectories are for ‘opposite polarity’: the retrograde loops of the direct
scattermg (d) become longer and longer as the critical condition (¢) is approached; (f) exchange
interaction. ' ‘

- The size of the ‘newly formed’ pairs is given by conservation of the hamiltonian. If y{?, y
are the initial values of y,,y, at large initial separation of the two original pairs, and 4 is the

size of the new pairs (by symmetry the two pairs have the same size), then
d* = 240 (—2yP) = V4. | (B9)

The angle 8 at which the two new pairs depart (see figure B 2f) is given by conservation of
momentum ’ .
. dcosl =y®+yP =& (B 10)
Thus cos?@ = y7L. (B 11)

For 0 < ¥y <1 we have a direct scattering as shown in figure B 2d. When x, = x,, i.e.
£ =0, we have from (B 7¢) that * = (1—x)" or from (B 6)

h/h=- (1—x)+1}*/x (B 12)

(these two values are reciprocals). The retrograde loop that one pair negotiates changes with
x becoming infinitely long as y >1 (B 2¢). ~

The critical value y =1 (panel (¢) in figures B 1, B 2) is right at the cross-over between
exchange and direct scattering. Because £ 0 asymptotically for y = 1 (figure B 1¢), we see
that the two pairs in this case tend to collinearity at infinite separation. Thus, one pair is
entirely ‘back-reflected’ as seen in figure B 2¢. This corresponds with (B 11) where § = 0, & for
x=1

If we ‘shoot’ two vortex pairs towards each other from a great distance, we have #* = y+1.
If we insist that the pairs pass one through the other, we must have y < 1. Thus, we have a
limiting value of |y| equal to 4/2. According to (B 6) this translates into limiting ratios y,/y,

51-2
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690 B.ECKHARDT AND H. AREF

equal to —(3+24/2). The two initial pairs must thus have a ratio of sizes that is either larger
than 3+424/2 ~ 5.83 or less than its reciprocal 3 —24/2 for slip-through to occur. We shall see
this particular size ratio re-emerge in a different context when we consider pairs of the same

olarity.
P v Same polarity

The main observation from figure B 1 is that bound state motion occurs for y > 1. The two
positive vortices ‘leapfrog’ one another as do the two negative vortices and the entire assembly
translates (figure B 1, 2¢). At y = 1 a cross-over to slip-through motions occurs (figure B 1, 25).
This may be thought of as a limiting case of the motion in figure B 2¢ where the length of the
spatial cycle diverges to infinity. (For ‘same polarity’ the cross-over is best thought of as a
limiting case of the ‘supercritical’ motion, y > 1; for ‘opposite polarity’ it is best thought of
as a limiting case of the ‘subcritical’ motion, ¥ < 1.) As the two pairs separate infinitely in this
case they attain the same size, i.e. 7—>0.

The critical ratio 34 2+/2 and its reciprocal now appear for the sizes of the two pairs at the
moment when all four vortices are collinear. When £ =0 and y = 1 we have 3* =1 from
(B 7b), which, it is easily seen, gives the critical size ratio for the two pairs. This result was
discovered by Grébli (1877) and later by Love (1894). When the size ratio at collinearity is
smaller than 3—24/2 or greater than 3+ 2+/2 the pairs separate arbitrarily with time.

There is an analogy between the behaviour of vortex pairs colliding and then passing one
another and the interaction of solitons in certain one-dimensional ppEs. Indeed, because the
state of the vortex pairs long after collision is identical to the state before, one can only detect
the collision by the retardation in arrival at a given x-station of a given pair. This is the
analogue of a phase shift for a travelling wave. Similarly the bound motions are analogues of
‘breather’ states in soliton-bearing systems. Analytical expressions for the retardation can be
derived, however we shall not pause to do so here.

We now consider the case A # 1. Our first objective is to produce a ‘phase plane’ analysis
analogous to that for A = 1 above. If we solve (B 4) for £* we get

Ex—1+gM [1—9") = (@, +a_ )1+ 1=y — (a_+a, 7)%. (B 13)

We consider separately the two functions

S 2) = L4+l |1 =g . (B 14q)
and 83 A,x) = (e o)L+ L= = (e +a, 7)%. (B 144)
For f we have S(=1;A) =f1;A) =0, f(0;A)=1. (B 154,5)
Also, differentiating with respect to 7 it is easily seen that f has a uniqu'e (local) maximum
at o= (A2=A1)/(A+27%) = —20_at, /(a2 +a?). (B 15¢)

The points 7 = 11, where f= 0, are minima. The value of f at 7, is
' QAT +A™?
A+ D) (A1)

Note that A?4+A2>2for A # 1 and that y, = 1 for A = 1. A diagram of f{5; A) for A2 = 0.9
is shown in figure B 3. For given yx in (B 13) we now see that the coefficient of £2 will have four

X = (B 154)
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A

-1 7 O +1

Ficure B 3. Plot of the function f{5; A) for A < 1. The local maximum at
7, and the corresponding value y, are shown,

zeros for 0 < y < x, (two within —1 <7 < 1, one in either of » < —1 and 9 > 1), three zeros
for x = x. (one at = 7, one in either of » < —1 and 5 > 1), and just two zeros for y > ¥,
(one in either of y < —1 and 7 > 1).

We next turn to g(7; A, x). For (B 13) to have physically acceptable solutions for £ it is
clearly necessary that g and y—f have the same sign. We may write g as

25 A %) = (o +om) + (e +a, )} (f—x) + (1—7%) (f+x)/2I*. (B 164)

Thus, g > Ofor |y < 1and f> y, and g <O for |g| > 1 and f < y. In these intervals there is no
physically acceptable solution for £2.

Forf=x g3 A, x) = (1—9®) x/T". (B 165)
These values of g are positive (negative) for || < 1(|y| > 1). Further points of reference are
that gE1;A,x) =—(a_ta,)’x <0, (B 16¢)

g(—a /a3 A,x) <0, : (B 164)
g(—a_fa;A,x) > 0. (B 16¢)

The analysis for same polarity is quite analogous to the special case A = 1 discussed above.
For y > x, there are two zeros of g in the interval —1 < < 1 and g is positive between the
two zeros and negative beyond either. Because y —fis always positive there are solutions for
£* in the interval between the two roots of g and £? is bounded. Thus, we have a régime of
bounded motion. For y = y, we see from (B 13) that £2— 00 when % - 7, % . It may also be seen
that one of the zeros of g will be between 74 and 1, the other between —1 and 7,. Finally for
0 < x < x. there will be two solutions of f= y in —1 <# < 1. Call these 3, and 7,, where
7, <7, We can then show that g has one zero in the interval —1 < 7 <19, and one in
7, <7 < 1. Hence, there are no physically acceptable solutions £* for 5, <% <79, and
g2~ oo for y—>7,— and for 5>y, +.

The £?* against 7 ‘phase portraits’ for same polarity are shown in ﬁgurc B 4. For A =1 the
diagrams are symmetrical about the £-axis, and reduce to figure B 1. The interpretation of
figure B 4 is quite similar to that of figure B 1 with bound-state motion for y > y, (figure B 4¢)
and slip-through for 0<y <y, (figure B 4a2). At the cross-over y = y, (figure B 45) both
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1.0 : 10
(a) (6)
0 ¢ 20 30 0 ¢ 2 30
/ /
-10t -0t
1.0

—-1.0t

Ficure B 4. ‘Phase plane’ diagrams for ‘same polarity’ and A < 1. These figures correspond to
(a)—(c) in figure B 1. (a) ¥ < x.; (bv) X=Xe; (€) X > X

branches asymptote to 7, From (B l5c) it is easy to see that the ratio of sizes as the pairs
separate infinitely in this case is A2,

The critical size ratios for slip-through when all vortices are collinear are given by the zeros
of g(n; A, x.). For A # 1 these two zeros are not reciprocals. For A = 1 relabelling the vortices
by interchanging indices 1 and 2 is equivalent to the symmetry £ >—§&,9——7. For A # 1 this
relabelling must be accompanied by the change A > A™!. Thus, the zeros of g and indeed the
entire trajectories in figure B 4 for positive and negative 5 are not symmetrical about the £*
axis. : '

In figure B 5 we show the result of a numerical determination of the critical size ratio at
collinearity as a function of A. We show just one branch. If we call the function shown in
figure B 5 r(A), the other branch (not shown) is *(A™!). The graph passes through A = 1,
r = 3+424/2. Thesize ratio r(A) has a limiting value as A > c0. The physical interpretation of this
result is straightforward if one recalls the streamline pattern for a pair of vortices in a frame of
reference moving uniformly along with them (figure B 6). In this frame the flow is steady and
pathlines of passively advected particles coincide with streamlines. There is a trapped region
of fluid inside the oval dividing streamline. A sufficiently weak second ‘vortex pair’ inside this
region will simply be advected by the stronger pair with no possibility of escape. The points
A, A’ are right at the crossover from bound to unbound motion in the limit where one pair is
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25}
205-
15—
S E

105

3+24/2
] !
o 4 Tee— N

L Lttt

1 2

0 2 o 4

Ficure B 5. The critical size ratio at collinearity for coaxial vortex pairs as a function of A. This function has two
branches, r(A) shown here and r~}(A"?). The ratio passes through 3+24/2 for A = 1 and asymptotes to a value
é ~ 2.0872538... given by (B 17) as A —> 0.

Ficure B 6. The streamline pattern ofa translatmg vortex pair in its rest frame of reference. The limiting value of
r as A~ o0 in figure B 5 is given by the ratio AA’/ VV’. Acton (1976) mcorrectly determmed this value as the
ratlo BB'/VV’.

infinitely weaker than the other. The size ratio § = AA’/VV’ is given by elementary
considerations as the non-trivial solution of

e = (6+1)%/(6—1)% . (B 17)
To derive this relation from our earlier analysis we let
1= (1=y2/Xy1)/ (1+7,/X9;) = 1-2647* (B 18)

to leading order in A™® where & = y,/y, is the size ratio. As A—00 we can expand the
constituents of g(7; A, x.) as follows:

(o, +a )t = A2(1+8)/T+ 0%, (B 19a)

(a_+a,q)t = A(1—8)}/ T2 +0AY), (B 19Y)
|1+77|A |--77|A ~ 2" exp (—9) (B 19¢)

and Xo ~ 2. (B 194)
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694 B.ECKHARDT AND H. AREF
Thus, g(7; A, X.) = 0 in the limit A —> oo implies (B 17). The solution is
6 =2.0872538.... (B 20)

We mention that Acton (1976; only §2 of this paper is relevant here) has discussed some of
these points. However, Acton’s criterion for bound-state motions, (6) of Acton (1976), differs
from ours and is incorrect. For A = 1 both criteria coincide with the earlier criteria of Grobli
(1877%) and Love (1894). As A—> 00 Acton is led to a relation ((14) of Acton 1976) that in

our notation would be
= (0+1)2/(6-1)% (B 21)

This differs from the physically motivated (B 17). Closer examination shows that what Acton
has calculated (via an erroneous criterion for bound-state motion) is the position of that
streamline, shown in figure B 6, which asymptotically (i.e. as x— +o0) levels off at the
y-coordinate of one of the vortices. The solution & found from (B 21) gives the ratio BB’/VV’
in figure B 6. The method used by Acton (1976) for determining when the vortices are locked
in periodic bound motion for same polarity is in general inadequate.

The case of opposite polarity differs significantly from that outlined for A = 1 in at least two
respects. First, when shot in from infinity two different pairs will always manage to pass one
another, i.e. we always have direct scattering (as already discussed for cases without the
symmetry of a common axis, see §4a). Even though the original pairs can break up upon
approaching one another, because of the different strengths each vortex must eventually
become paired with its initial partner. Combining this simple insight with the constraints
imposed by energy and momentum conservation, we see that we can have more or less
elaborate loops of non-neutral, intermediate pairs, but the ultimate outcome is certain: the
original pairs re-emerge moving in the same directions as they were initially. Hence, the phase
plane diagram now always has trajectories that come in from large values of £2 and intersect
the #-axis. An example is shown in figure B 7a. Second, it is now possible to have bound-state
motion. This comes about in the ‘phase plane’, as indicated in figure B 7, by a ‘pinch off” of
the loop in figure B 74 (see the portions of the phase trajectory by the arrows in figure B 74, ).

- - - - - - - - - ——— - -~ ——— = =
——————

_— -
7!
0 e 7 £
X X
bt B B e k-_ —_———

Ficure B 7. The case of ‘opp051tc polarity’ for A < 1 can lead to a régime of bound motion (b) for sufficiently large
values of x. In (a) there is retrograde motion (arrow) but no bound régime. In (b) the possibility of bound
motion is clearly indicated (arrow).
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COLLISION DYNAMICS OF VORTEX PAIRS 695

Bound motion of two pairs with a common axis in the opposite polarity case is easily
understood if the motion is viewed as that of two vortices of opposite sign but different strengths
close to a plane wall. A weaker negative vortex can orbit a stronger positive vortex while the
two of them move along the wall. An example of real space trajectories for this type of motion
is shown in figure B 8. The trajectories of one pair of vortices is shown by the plain lines, the
other pair by the bold lines. The small arrows indicate the direction of motion.

NN
(AR
LAV V.V
SEOI DD DL 7
SSSSS N
CORD

QALOALDAL
KKK
Ficure B 8. Vortex trajectories corresponding to the bound motion régime idéntiﬁed in figure B 75. The vortices

tracing the bold trajectories have opposite circulations as do the vortices providing the other two tracks. Arrows
indicate direction of motion, and the entire plot has a horizontal axis of symmetry.

The determination of this régime of bounded motion can be approached by investigating
the conditions under which both £ and d£?/dy vanish for some 5. By (B 13) this reduces to
an inquiry of when g and dg/dy both vanish, and this in turn yields a cubic equation for 7.
However, we shall not elaborate on the details here.
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